已知a/m=b/n=c/p,求证:(a²+b²+c²)(m²+n²+p²)=(am+bn+cp)²
问题描述:
已知a/m=b/n=c/p,求证:(a²+b²+c²)(m²+n²+p²)=(am+bn+cp)²
答
a/m=b/n=c/p =>an=bm,ap=cm,bp=cn
(a²+b²+c²)(m²+n²+p²)
=a²m²+b²m²+c²m²+a²n²+b²n²+c²n²+a²p²+b²p²
+c²p²
=a²m²+b²n²+c²p²+(a²n²+b²m²)+(a²p²+c²m²)+(b²p²+c²n²)
=a²m²+b²n²+c²p²+2a²n²+2a²p²+2c²n²
=a²m²+b²n²+c²p²+2abmn+2acmp+2bcnp
=(am+bn+cp)²
答
设a/m=b/n=c/p=k,则a=km,b=kn,c=kp
a²+b²+c²=k²(m²+n²+p²)
(a²+b²+c²)(m²+n²+p²)=k²(m²+n²+p²)²
am+bn+cp=k(m²+n²+p²)
(am+bn+cp)² =(k(m²+n²+p²))² =k²(m²+n²+p²)²
得证
答
令a/m=b/n=c/p=ka=kmb=knc=kp左边=(k²m²+k²n²+k²p²)(m²+n²+p²)=k²(m²+n²+p²)²右边=(km²+kn²+kp²)²=k²(m²+n&...