判断下列函数的奇偶性 f(x)=[sin(π/2+x)cos(π/2-x)tan(-x+3π)]/[sin(7π-x)tan(8π-x)]

问题描述:

判断下列函数的奇偶性 f(x)=[sin(π/2+x)cos(π/2-x)tan(-x+3π)]/[sin(7π-x)tan(8π-x)]

sin(π/2+x)=cosx,cos(π/2-x)=sinx,tan(-x+3π)=-tanx,sin(7π-x)=sinx,tan(8π-x)=-tanx
所以原式就可化简为f(x)=cosx 所以f(x)为偶函数,希望你能帮到你