cos20°-cos40°+cos60°+cos100°的值等于 ______.

问题描述:

cos20°-cos40°+cos60°+cos100°的值等于 ______.

cos20°-cos40°+cos60°+cos100°
=cos(60°-40°)+cos(60°+40°)-cos40°+cos60°
=2cos60°cos40°-cos40°+cos60°
=cos60°
=

1
2

故答案为:
1
2

答案解析:先把cos20°转化成cos(60°-40°),cos100°转化成cos(60°+40°)进而利用两角和公式化简整理求得cos20°-cos40°+cos60°+cos100°=cos60°,进而求得答案.
考试点:两角和与差的余弦函数.
知识点:本题主要考查了两角和公式的余弦函数.解题的关键是利用cos20°=cos(60°-40°),cos100°=cos(60°+40°)巧妙的利用两角和公式达到化简的目的.