求微分y=arcsin(1-x) 后边要乘上一个d(1-x) 而y=tan^2(1-x)后边乘的却是求微分y=arcsin(1-x) 后边要乘上一个d(1-x)而y=tan^2(1-x)后边乘的却是dx为什么?有什么规律吗?

问题描述:

求微分y=arcsin(1-x) 后边要乘上一个d(1-x) 而y=tan^2(1-x)后边乘的却是
求微分y=arcsin(1-x) 后边要乘上一个d(1-x)
而y=tan^2(1-x)后边乘的却是dx为什么?有什么规律吗?

y=tan^2(1-x)后边也有d(1-x)
dy=dtan^2(1-x)
=2tan(1-x)dtan(1-x)
=2tan(1-x)[sec(1-x)]^2d(1-x)
=-2tan(1-x)[sec(1-x)]^2dx

复合函数求导法则:y=u,u=v,v=f(x)
=>dy/dx=dy/du*du/dv*dv/dx