设函数fx=sinx+cosx和gx=2sinxcosx 若a为实数,求Fx=af(x)+g(x),x属于[0,π/2]的最小值.
问题描述:
设函数fx=sinx+cosx和gx=2sinxcosx 若a为实数,求Fx=af(x)+g(x),x属于[0,π/2]的最小值.
答
令sinx+cosx=2sin(x+π/4)=t ∵0≤x≤π/2,π/4≤x+π/4≤3π/4,∴-√2/2≤sin(x+π/4)≤1 即-√2≤t≤2 (sinx+cosx)^2=1+2sinxcosx=t^2 2sinxcosx=t^2-1 F(x)=t+a(t^2-1)=at^2+t-a,-√2≤t≤2 讨论a取最值 当0<a<...