“急”14道初三数学的问题(高悬赏)全答对200悬赏

问题描述:

“急”14道初三数学的问题(高悬赏)全答对200悬赏
1.如图,CD是圆O的直径,∠EOD=72°,AE交圆O于点B,且AB=OC,求∠A的度数.
2.如图,三角形ABC内接于圆O,OM⊥BC,ON⊥AC,垂足分别为M,N,连接MN,求证MN=1/2AB.
3.用反证法证明:过直线外一点有且只有一条直线与一只直线垂直.
4.一只菱形ABC,变长为5cm,对角线AC,BD相交于点O,其中AC为8cm,以O点位圆心,2cm位半径的圆与菱形四边的位置关系是怎样的?以O点为圆心,半径为多少时,圆O与菱形的四边都相切?
5.如图,AB时圆O的直径,BC时圆O的切线,OC与圆O相交于点D,连接AD并延长交BC于点E.(1)若BC=根号√3,CD=1,求圆O的半径.(2)取BE的重点F,连接DF,试判断DF于圆O的位置关系.
6.如图,PA,PB与圆O相切于点A,B,AC为圆O的直径,求证OP‖BC.
7.如图,圆O为三角形ABC的内切圆,且与AC,AB,BC分别相切于点D,E,F.
(1)若三角形ABC的周长为8cm,面积为12平方厘米,求圆O的半径.
(2)设三角形ABC的周长l,面积为S,内切圆的半径为r,请写出S,l,r三间之间的关系式,并证明你的结论.
8.一只A,B,C,D在圆上,AD‖BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10.(1.)求次元的半径.(2.)求阴影部分的面积.
9.如图,A,B,C,D是圆O上的点,AB=BC,BD与AC相交于点E,连接CD,AD.
(1)求证:DB平分∠ADC.(2)若BE=3,ED=6,求AB长.
10.如图,ABCD中,AB‖CD,如果S△ODC:S△BDC=1:3,求S△ODC:S△ABC.
11.如图所示,DE‖BC且△ADE与四边形BCED的面积相等,试探求AD与DB之间的数量关系,并说明理由.
12.如图,平行四边形ABCD面积为2004cm²,E为AB延长线上一点,且BE=1/4AB,求△BEF的面积.
13.如图,圆内接正六边形ABCDEF中,对角形BD,EC相交于点G,求∠BGC的度数.
14.如图,圆O1与圆O2相交于A,B两点,过点A的直线与圆O1相交于点C,与圆O2相交于点D,圆01的弦BE与圆O2相交于点F,试判断CE与FD的位置关系,并说明理由.

1)连接OB,
∵AB=OC,OB=OC(都是半径),
∴OB=AB, ∴∠BOA=∠BAO=∠A,
∵OE=OB, ∴∠OEB=∠OBE=∠BOA+∠BAO=2∠A,
∴∠EOD=∠OEB+∠A=2∠A+∠A=3∠A=72°
∴3∠A=72°,
∴∠A=24°.
---------------------------------------------------------------
[注] 这里反复使用了一个简单结论:三角形外角等于与它不相邻的两个内角之和

2)证:连接OA,OB,OC,
∵ON⊥AC,OA=OC(都是半径),
∴NA=NC, ∴CN=1/2*CA,
∵OM⊥BC,OB=OC(都是半径),
∴MB=MC, ∴CM=1/2*CB,
∴CN:CA=CM:CM=1:2
∵∠NCM=∠ACB=∠C
∴△NCM∽△ACB(SAS)
∴NM‖AB且NM:AB=1:2
∴NM=1/2*AB
证毕.
3)证:任取直线l与直线外一点P,由几何公理得存在一条直线i使得i⊥l;由于i不平行于l,所以由几何公理得i与l有且仅有一个交点,设此交点为A,则PA⊥l,
假设过P存在异于i的直线j使得j⊥l,易得在直线l上存在点B为j与l的交点,使得PB⊥l;由于i≠j且i与j已经有交点P,所以B≠A(因为若非如此就有i=j,因为由几何公理得两点P,A确定一条直线所以i,j重合).
∵线段AB在l上,且P不在l上,
∴P与AB不共线,
∴可以连接PA,PB使得PAB构成一个三角形,
∵PAB为三角形,
∴∠P+∠A+∠B=180°且∠P,∠A,∠B>0°
∵PA,PB⊥l, ∴PA,PB⊥AB,
∴∠PAB=∠PBA=90°即∠A=∠B=90°,
∴∠P=180°-(∠A+∠B)=0°而这与∠P>0°矛盾,
∴假设不成立,这就证明了过任一直线外一点有且只有一条直线与一只直线垂直.
证毕.
---------------------------------------------------------------
[注意] 题目条件前提部分为了严谨应加入“同一平面内”,即“同一平面内,过直线外一点有且只有一条直线与一只直线垂直”,因为过3维空间的直线外一点有无数条直线与给定直线垂直,在非欧几何中该命题也不成立.
4)∵菱形对角线互相垂直平分,
∴AC⊥BD且OA=OC,OD=OB,
∴AO=1/2*AC=1/2*8=4(cm)且∠AOB=90°,
∴BO=√(AB^2-AO^2)√(5^2-4^2)=3(cm) (由△AOB为Rt三角形得AB^2=AO^2+BO^2),
∵ABCD为菱形,所以ABCD中心O到四边距离都相等,过O作OE⊥AB,
∵面积S(△AOB)=1/2*OE*AB=1/2*AO*BO,
∴OE=AO×BO÷AB=4×3÷5=12/5=2.4>2,
∴2cm位半径的圆与菱形四边都不交.
由前述分析得,以O点为圆心的圆,半径为2.4时,圆O与菱形的四边都相切.
5)
(1)设OB=x,则OD=OB=x,故OC=OD+CD=x+1,
∵△OBC为直角三角形,所以OB^2+BC^2=OC^2,
∴√3^2+x^2=(x+1)^2,解得x=1,
∴OB=x=1,故圆O半径长度为1.

(2)DF与圆O相切.证明如下:
∵F为BE的中点, ∴BF=1/2*BE,
∵OB=OA, ∴BO=1/2*BA,

∴OF平行且等于1/2*AC(由SAS得△BOF∽△BAC),
∴∠DOF=∠ODA,∠BOF=∠A,
∵∠ODA=∠A(∵OD=OA),
∴∠DOF=∠BOF,
又∵OD=OB,OF=OF,
∴△DOF≌△BOF(SAS),
∴∠ODF=∠OBF=90°,
∴DF⊥OD,
∴DF与圆O相切
---------------------------------------------------------------
[注意]千万不能用第(1)小问的结论“OB=1,CO=2,∠C=30°,∠COB=60°”,一方面条件“若BC=根号√3,CD=1”只适用于第(1)小问,一方面第二问结论完全可以不依赖第一问的条件独立推出,是更一般性的结论.
6)证:连接BO,
∵PA,PA为圆O切线,∴∠OAP=∠OBP=90°,
又∵OA=OB,OP=OP,
∴△OAP≌△OBP(SAS),
∴∠AOP=∠BOP,∴∠AOB=∠AOP+∠BOP=2∠BOP,
∴π=∠AOC=∠AOB+∠COB=2∠BOP+∠COB,
又∵π=∠C+∠OBC+∠COB=2∠OBC+∠COB(∵OC=OB易得∠C=∠OBC),
∴2∠BOP+∠COB=2∠OBC+∠COB,
∴∠BOP=∠OBC,
∴OP‖BC.证毕.
7)
(1)连接OD,OE,OF,设圆O半径长为r,由O为△ABC内切圆易得OD=OE=OF=r; 已知△ABC周长L=8(cm),面积为S=12(cm^2),
∵L=AB+BC+CA,
S=S(△ABC)=S(△AOB)+S(△BOC)+S(△COA)=1/2*AB*OE+1/2*BC*OF+1/2*CA*OD=1/2*(AB+BC+CA)*r,
∴S=1/2*L*r,
∴r=2S/L=2*12/8=3(cm),
∴圆O半径长为3cm.
(2)S,l,r关系为S=1/2*Lr,证明直接包含在(1)推导过程中.
8)
(1)过D做DE⊥AC,
∵AD‖BC, ∴∠ADC+∠BCD=180°,∴∠BCD=180°-∠ADC=180°-120°=60°,
∵AC平分∠BCD, ∴∠DCA=∠BCA=1/2*∠BCD=1/2*60°=30°,
∴∠DAC=180°-(∠ADC+∠DCA)=180°-(120°+30°)=30°,
∴∠DAC=∠DCA,故由DE⊥AC可得DA=DC且∠EDA=∠EDC,
∵∠DCE=∠DCE=30°,∠DEC=90°,∴∠EDC=60°,
∴Rt△DEC中,设DE=x,则有CD=2DE=2x,故AD=CD=2x且AB=DC=2x(∵由AD‖BC易得ABCD为等腰梯形),
∵∠B=∠BCD=60°(∵ABCD为等腰梯形),∠BCA=30°,
∴∠BAC=180°-(∠B+∠BCA)=180°-(60°+30°)=90°,
∴BC=2AB=2*2x=4x,且BC为圆O的直径(OB,OC为半径),
∴ABCD周长为L=AB+BC+CD+DA=2x+4x+2x+2x=10,解得x=1,
∴OB=1/2*AB=1/2*4x=2x=2,
∴圆的半径为2.
(2)连接OA,OD,过O做OE⊥AD,
∵OA=OB,∴∠OBA=∠OAB=60°,∴∠BOA=180°-(∠OBA+∠OAB)=60°,同理可得∠COD=60°,
∴∠AOD=180°-(∠BOA+∠COD)=60°,
∴扇形OAD的面积S(扇OAD)=60°/360°πr^2=1/6*πOA^2=1/6*π2^2=(2/3)π,
∵OA=OD且OE⊥AD,∴OE垂直平分AD,故EA=ED=1/2*AD=1,
∵AB=BO=OD=DA=2, ∴ABOD为菱形, ∴∠ODE=∠B=60°,
∵Rt△OED中,∠OED=90°且∠ODE=60°,
∴OE=√3*ED=√3,
∴△OED面积为S(△OAD)=1/2*AD*OE=√3,
∴阴影部分面积为S(扇OAD)-S(△OAD)=(2/3)π-√3.
9)
(1)证:∵AB=BC,∴劣弧AB=劣弧BC,∠BDA=∠BDC(等弧所对圆周角相等,即“等弧对等角”),
∴DB平分∠ADC.证毕.
(2)∵∠BCA与∠BDA皆为劣弧AB所对的圆周角,∴∠BCA=∠BDA,
又∵∠BDA=∠BDC(第(1)问结论),∴∠BCE=∠BCA=∠BDA=∠BDC,
又∵∠CBE=∠DBC,∴△CBE∽△DBC(AAA),
∴BE/BC=BC/BD即3/BC=BC/3+6=BC/9,∴BC^2=27,
∴BC=3√3,
∴AB=BC=3√3.
10)过O做直线OE⊥AB,此直线交DC于F,由AB‖CD易得OF⊥DC;过B做BG⊥DC交DC延长线于G,
则S△ODC=1/2*DC*FO,S△BDC=1/2*DC*GB,
∴S△ODC:S△BDC=1/2*DC*FO:1/2*DC*GB=FO:GB=1:3,
易得FE‖GB且FE=GB,∴FO:OE=FO:(FE-FO)=FO:(GB-FO)=1:(3-1)=1:2,
过C做CH⊥DB,与上述同理可得
S△ODC:S△BDC=1/2*DO*CH:1/2*DB*CH=DO:DB=1:3,故DO:OB=1:2,
∴易得S△ODC:S△BOC=DO:OB=1:2,
∵AB‖CD,∴∠DCO=∠BAO,∠CDO=∠ABO,又∵∠BOA=∠DOC,
∴△BOA∽△DOC(AAA),
∴DC:AB=DO:OB=1:2,又因为FO:OE=1:2,
∴S△ODC:S△BOA=1/2*DC*FO:1/2*OB*OE=DC*FO:OB*OE=1*1:2*2=1:4,
∴S△ODC:S△ABC=S△DOC:(S△BOA+S△BOC)=1:(4+2)=1:6.
11)∵DE‖BC,∴易得△ADE∽△ABC(AAA),故AD:AB=DE:BC,不妨设此比例为k,则BC=kDE
过A做AG⊥BC,AG交DE于F,易得AF⊥DE且AG:AF=AD:AB=k,故AG=kAF,
∴S△ADE:S(梯形DBCE)=S△ADE:(S△ABC-S△ADE)=1/2*DE*AF:(1/2*BC*AG-1/2*DE*AF)=1/2*DE*AF:(1/2*kDE*kAF-1/2*DE*AF)=DE*AF:(k^2-1)DE*AF=1:k^2-1=1:1,
∴k^2-1=1,故k=√2,
∴AD:AB=1:√2,
∴AD:DB=1:√2-1即DB=(√2-1)AB.
12)过F做直线l⊥DC交DC于G,交BE于H(FG⊥DC);由于AB‖DC(∵ABCD为平行四边形)故FH⊥BE,
∵BE与AB共线且AB‖DC,∴BE‖DC,由此易得△FDC∽△FEB(AAA),同理可得Rt△FGC∽Rt△FHB,
∴BE:CD=FB:FC=FH:FG,
∵BE=1/4*AB,AB=CD,
∴S△FDC:S△FEB=1/2*CD*FG:1/2*BE*FH=CD*FG:BE*FH=4BE*4FH:BE*FH=4^2:1=16:1;
同理可得△EFB∽△EDA且S△EDA:S△EFB=(1+4)^2=25:1,
∴S梯形FDAB:S△EFB=(S△EDA-S△EFB):S△EFB=(25S△EFB-S△EFB):S△EFB=24:1,
∴S平行四边形ABCD:S△EFB=(S△FDC+S梯形FDAB):S△EFB=(16S△EFB+24S△EFB):S△EFB=40:1
∴S△EFB=1/40*S平行四边形ABCD=1/40*2004=2004/40=50.1(cm^2)
∴△BEF的面积为50.1cm^2.
13)由于n边形内角和为(n-2)180°,所以正n边形每个内角为(n-2)180°/n,
∴此时n=6,∠BCD=∠EDC=(6-2)180°/6=3/2*180°=120°,
∵CB=CD,DE=DC(正六边形),∴∠CBD=∠CDB,∠DEC=∠DCE,
∴∠CBD=∠CDB=1/2(180°-120°)=30°,同理可得∠DEC=∠DCE=30°,
∴∠GCD=∠DCE=30°,∠GDC=∠CDB=30°,
∴∠CGD=180°-(∠GCD+∠GDC)=120°,
∴∠BGC=180°-∠CGD=60°
-----------------------------------------------------------
[附] 给个n边形内角和为(n-2)180°的证明.
Pf:∵n边形其中一顶点与其他顶点的连线将n边形分割为n-2个三角形,
∴n边形内角和等于n-2个三角形的内角和之和,
∴n边形内角和=(n-2)180°.
证毕.
14)CE‖FD.证明如下:
连接AB,则∠ECA=∠ABE(同样为圆O1的劣弧EA所对圆周角),∠ABF=∠ADF(同样为圆O2的劣弧FA所对圆周角),
∵E,F共线,∴∠ABE=∠ABF,∴∠ECA=∠ADF,
设CD与EF交于点G,则∠ECG=∠ECA=∠ADF=∠GDF,
∴CE‖FD. 证毕.