把下列多项式分解因式(1)mx^2-8mx+16m(2)-x^4+256(3)-a+2a^2-a^3(4)27x^2 y+3x^2

问题描述:

把下列多项式分解因式(1)mx^2-8mx+16m(2)-x^4+256(3)-a+2a^2-a^3(4)27x^2 y+3x^2

解mx^2-8mx+16m
=m(x^2-8x+16)
=m(x-4)(x-4)
=m(x-4)²
-x^4+256
=256-x^4
=2^8-x^4
=(2^4-x^2)(2^4+x^2)
=(2^2-x)(2^2+x)(2^4+x^2)
=(4-x)(4+x)(16+x^2)
-a+2a^2-a^3
=-a(1-2a+a^2)
=-a(a^2-2a+1)
=-a(a-1)²
27x^2 y+3x^2
=3x^2(9 y+1)