1/1*2*3+1/3*5*7+•••1/2001*2003*2005

问题描述:

1/1*2*3+1/3*5*7+•••1/2001*2003*2005

第一个打错了吧,应该是1/1*3*5.
设1/(n-2)n(n+2)=a/(n-2)+b/n+c/(n+2),则
1/(n-2)n(n+2)=【(a+b+c)*n^2+(2a-2c)*n-4b】/(n-2)n(n+2),
得a+b+c=0,2a-2c=0,-4b=1,即a=c=1/8,b=-1/4,
所以1/(n-2)n(n+2)=1/8*[1/(n-2)-2/n+1/(n+2)],所以
1/1*3*5+1/3*5*7+•••1/2001*2003*2005=1/8*(1/1-2/3+1/5)+1/8*(1/3-2/5+1/7)+1/8*(1/5-2/7+1/9)+……+1/8*(1/2001-2/2003+1/2005)=1/8*(1-1/3-1/2003+1/2005)=1004003/12048045。

1/1*3*5=1/15 =1/4*(1/1*3-1/3*5),
1/3*5*7=1/105 =1/4*(1/3*5-1/5*7),
.
1/2001*2003*2005=.=1/4*(1/2001*2003-1/2003*2005),
∴原式=1/4*(1/1*3-1/3*5)+1/4*(1/3*5-1/5*7)+.+1/4*(1/1*3-1/3*5)
=1/4*(1/1*3-1/3*5+1/3*5-1/5*7+.+1/2001*2003-1/2003*2005)
=1/4*(1/1*3-1/2003*2005)
=1004003/12048045
若第一项不改,可从第二项开始计算,最后再加第一项,结果为1/6+1/3*5-1/2003*2005