观察下列等式:1/1*2=1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4,将以上三个等式两边分别相加得:1/1*2+1/2*3+1/3*4=1-1/2+1/2-1/3+1/3-1/4=1-1/4=3/4.(1)猜想并写出:1/n(n+1)=______;(2)直接写出下列各式的计算结果1/1*2+1/2*3+1/3*4+...+1/99*100=_________;(3)计算:1/1*2+1/2*3+1/3*4...+1/n(n+1).
问题描述:
观察下列等式:1/1*2=1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4,将以上三个等式两边分别相加得:
1/1*2+1/2*3+1/3*4=1-1/2+1/2-1/3+1/3-1/4=1-1/4=3/4.
(1)猜想并写出:1/n(n+1)=______;
(2)直接写出下列各式的计算结果
1/1*2+1/2*3+1/3*4+...+1/99*100=_________;
(3)计算:1/1*2+1/2*3+1/3*4...+1/n(n+1).
答
(1)1/n(n+1)=1/n-1/(n+1)
(2)99/100
(3)原式=1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)=1-1/n+1)=n/(n+1)
答
1/n-1/(n+1)
1-1/100=99/100
1-1/(n+1)=n/(n+1)
答
裂项法:
观察下列等式:1/1*2=1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4,将以上三个等式两边分别相加得:1/1*2+1/2*3+1/3*4=1-1/2+1/2-1/3+1/3-1/4=1-1/4=3/4.
(1)猜想并写出:1/n(n+1)=1/n-1/(n+1);
(2)直接写出下列各式的计算结果
1/1*2+1/2*3+1/3*4+...+1/99*100=1-1/100=99/100;
(3)计算:
1/1*2+1/2*3+1/3*4...+1/n(n+1)
=1-1/2+1/3-1/3+1/3-1/4+……+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)