如图,AB为⊙O的直径,PQ与⊙O相切于T,过A点作AC⊥PQ于C点,交⊙O于点D.若AD=2,TC=3,则⊙O的半径为______.

问题描述:

如图,AB为⊙O的直径,PQ与⊙O相切于T,过A点作AC⊥PQ于C点,交⊙O于点D.若AD=2,TC=

3
,则⊙O的半径为______.

过O作OE⊥AC于E,连接OT、OD,
∵AC⊥PQ,PQ切⊙O于T,
∴∠OEC=∠ECT=∠OTC=90°,
∴四边形OECT是矩形,
∴OT=CE,
∵OE⊥AC,OE过圆心O,
∴AE=DE=

1
2
AD=1,
∵CT=
3
=OE,
在Rt△OED中,由勾股定理得:OD=2.
答案解析:过O作OE⊥AC于E,连接OT、OD,得出矩形OECT,求出OT=CE,根据垂径定理求出DE,根据矩形性质求出OT=CT,根据勾股定理求出即可.
考试点:切线的性质;三角形内角和定理;圆周角定理;相似三角形的判定与性质.
知识点:本题考查了切线的性质,圆周角定理,相似三角形的性质和判定,三角形的内角和定理等知识点的运用,主要考查学生运用定理进行推理的能力,题目综合性比较强,具有一定的代表性.