运用乘法公式计算(2+1)(2^2 +1)(2^4+1)(2^8+1)(2^16+1)+1的值
问题描述:
运用乘法公式计算(2+1)(2^2 +1)(2^4+1)(2^8+1)(2^16+1)+1的值
答
(2+1)(2^2 +1)(2^4+1)(2^8+1)(2^16+1)+1
=1*(2+1)(2^2 +1)(2^4+1)(2^8+1)(2^16+1)+1
=(2-1)(2+1)(2^2 +1)(2^4+1)(2^8+1)(2^16+1)+1
=(2^2-1)(2^2 +1)(2^4+1)(2^8+1)(2^16+1)+1
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)+1
=(2^8-1)(2^8+1)(2^16+1)+1
=(2^16-1)(2^16+1)+1
=2^32-1+1
=2^32
答
(2-1)(2+1)(2^2 +1)(2^4+1)(2^8+1)(2^16+1)+1=(2^2-1)(2^2 +1)(2^4+1)(2^8+1)(2^16+1)+1=(2^4-1)(2^4+1)(2^8+1)(2^16+1)+1=(2^8-1)(2^8+1)(2^16+1)+1=(2^16-1))(2^16+1)+1=2^32-1+1=2^32