f (x)=(9的x次方减2的x+1次方与3的x次方的积)除以2的2x次方 值域咋求

问题描述:

f (x)=(9的x次方减2的x+1次方与3的x次方的积)除以2的2x次方 值域咋求

首先对原方程进行化简,其中 2^x表示 2的x次方 f(x)=[ 3^(2x) - 2 × 2^x × 3^x ] / 2^(2x) = (3/2)^2x - 2 × (3/2)^x = [(3/2)^x ]^2 - 2 × [(3/2)^x ]设 t = (3/2)^x 显然 t > 0 则 f(t) = t^2 - 2t = (t-1)^2 -...