计算(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)-1
问题描述:
计算(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)-1
答
原式=[(3-1)*(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/(3-1)]-1
=[(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/(3-1)]-1
=[(3^32-1)/2]-1
=3/2(3^31-1)
答
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)-1
=1/2*(3-1)*(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)-1
=1/2(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)-1
=1/2*(3^4-1)(3^4+1)(3^8+1)(3^16+1)-1
=1*2(3^8-1)(3^8+1)(3^16+1)-1
=1/2*(3^16-1)(3^16+1)-1
=1/2(3^32-1)-1
=1/2(3^32+1)