已知抛物线c:y^2=4x的焦点为F,过F的直线l与c相交于两点A、B 求|AB|最小值
问题描述:
已知抛物线c:y^2=4x的焦点为F,过F的直线l与c相交于两点A、B 求|AB|最小值
答
y²=4x的焦点为F(1,0),准线为x=-1。
设A(x1,y1),B(x2,y2),由抛物线定义知|AF|=x1+1,|BF|=x2+1
|AB|=x1+x2+2
由于直线AB过F,故设AB的方程为x=my+1,代入y²=4x,得y²-4my-4=0
y1+y2=4m
所以x1+x2=(my1+1)+(my2+1)=m(y1+y2)+2=4m²+2
|AB|=x1+x2+2=4m²+4,
当m=0时,|AB|的最小值为4
答
焦点F为(1,0)
当斜率不存在时,AB为通径,|AB|=4
当斜率存在时,设直线l的斜率为k,A、B 坐标为(x1,y1),(x2,y2)
则直线l:y=k(x-1)
联立y^2=4x
得k^2x^2-(2k^2+4)x+k^2=0
故x1+x2=(2k^2+4)/k^2=2+4/k^2>2
所以|AB|=x1+x2+2>4
综上,当斜率不存在时,|AB|取得最小值为4.