试求(2+1)(2^2+1)(2^4+1)…(2^30+1)+7的个位数字(写出计算步骤)
问题描述:
试求(2+1)(2^2+1)(2^4+1)…(2^30+1)+7的个位数字(写出计算步骤)
答
个位分别是3,5,7,3,5,7以此类推总共有10个这样的排列结构(3+5+7)*10。再加上+7最终的结果就是个位=7
答
前面乘数部分,每个都是奇数,第二个为2^2+1=5,奇数乘以5的结果个位肯定是5,所以前面乘积的个位为5,5+7=12,因此(2+1)(2^2+1)(2^4+1)…(2^30+1)+7的个位数字为2