设a、b、c为正数,且满足a2+b2=c2.(1)求证:log2(1+b+ca)+log2(1+a−cb)=1(2)若log4(1+b+ca)=1,log8(a+b−c)=23,求a、b、c的值.
问题描述:
设a、b、c为正数,且满足a2+b2=c2.
(1)求证:log2(1+
)+log2(1+b+c a
)=1a−c b
(2)若log4(1+
)=1,log8(a+b−c)=b+c a
,求a、b、c的值. 2 3
答
证明:(1)左边=log2
+log2a+b+c a
=log2(a+b−c b
•a+b+c a
)a+b−c b
=log2
=log2
(a+b)2−c2
ab
=log2
a2+2ab+b2−c2
ab
=log22=1;2ab+c2−c2
ab
(2)由log4(1+
)=1得1+b+c a
=4,∴-3a+b+c=0①b+c a
由log8(a+b−c)=
得a+b−c=82 3
=4②2 3
由①+②得b-a=2③
由①得c=3a-b,代入a2+b2=c2得2a(4a-3b)=0,∵a>0,
∴4a-3b=0④
由③、④解得a=6,b=8,从而c=10.
答案解析:(1)利用对数的性质化简等式的左边,真数按照多项式的乘法展开,利用a2+b2=c2即可.
(2)log4(1+
)=1,log8(a+b−c)=b+c a
,分别去掉对数符号,解方程组求出a、b、c的值.2 3
考试点:对数的运算性质.
知识点:本题考查对数的运算性质,是基础题.