放缩法证明根号n-1+根号n+1
问题描述:
放缩法证明根号n-1+根号n+1
答
因为当k≥2时,1/√k=2/(2√k)<2/(√k+√(k-1))=2(√k-√(k-1)).所以 1+1/√2+1/√3+ +1/√n<1+2(√2-√1)+2(√3-√
放缩法证明根号n-1+根号n+1
因为当k≥2时,1/√k=2/(2√k)<2/(√k+√(k-1))=2(√k-√(k-1)).所以 1+1/√2+1/√3+ +1/√n<1+2(√2-√1)+2(√3-√