1+1/根号2+1/根号3+…1/根号n

问题描述:

1+1/根号2+1/根号3+…1/根号n

g

因为当k≥2时,1/√k=2/(2√k)<2/(√k+√(k-1))=2(√k-√(k-1)).
所以
1+1/√2+1/√3+⋯+1/√n<1+2(√2-√1)+2(√3-√2)+⋯+2(√n-√(n-1))=2√n-1

1/√n=2/2√n<2/√n-1√n=2(√n-√(n-1)),∴1+1/√2+1/√3+...+1/√n<1+2(√2-√1+√3-√2+...√n-√(n-1))=2√n-1<2√n。证毕!