求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx答案是π/2,原题中还有一部分是ln[x+(1+x^2)^1/2]因为是奇函数等于0,就不用再算了.
问题描述:
求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx
答案是π/2,原题中还有一部分是ln[x+(1+x^2)^1/2]因为是奇函数等于0,就不用再算了.
答
既然你知道奇函数在对称区间积分为0,那么把那个被积分式xcosx/(1+sin²x)也是奇函数,不用算了。
仅仅积分∫cosx/(1+sin²x)dx=2∫cosx/(1+sin²x)dx,从0到π/2
∫cosx/(1+sin²x)dx=arctansinx,带入π/2和0,既得结果π/2
答
xcosx/(1+sinx^2)这项也是奇函数,所以是0只剩下cosx/(1+sinx^2)了积分(-π/2到π/2) [ cosx/(1+sinx^2) ]dx=积分(-π/2到π/2) [ 1/(1+sinx^2) ]dsinx=arctan(sinx) | (-π/2到π/2)=2arctan1=π/2...