某商店需要购进甲、乙两种商品共160件,其进价和售价如下表: 甲 乙进价(元/件) 15 35售价(元/件) 20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
问题描述:
某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
甲 | 乙 | |
进价(元/件) | 15 | 35 |
售价(元/件) | 20 | 45 |
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
答
答案解析:(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.
(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.
考试点:A:一元一次不等式组的应用 B:二元一次方程组的应用
知识点:解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.