若sin(6分之派-a)=3分之1,则cos(3分之2派+2a)得值为

问题描述:

若sin(6分之派-a)=3分之1,则cos(3分之2派+2a)得值为

cos(3分之2派+2a)=-cos(派-(3分之2派+2a))=-cos(3分之派-2a)=2sin^2(6分之派-a)-1=-7/9

cos(2π/3+2a)
=-cos(π/3-2a)
=-[cos2(π/6-a)]
=-[1-2sin²(π/6-a)]
=-[1-(2/9)]
=-7/9

cos(2π/3+2a)=-cos(π/3-2a)=-[cos2(π/6-a)]=-[1-2sin²(π/6-a)]=-[1-(2/9)]=-7/9