4已知某消费者每年用于商品1和的商品2的收入为540元,两商品的价格分别为P1=20元和P2=30元,该消费者的效我想知道mu1和mu2是怎么来的,就是不懂mu2的由来,4已知某消费者每年用于商品1和的商品2的收入为540元,两商品的价格分别为=20元和=30元,该消费者的效用函数为,该消费者每年购买这两种商品的数量应各是多少?从中获得的总效用是多少?根据消费者的效用最大化的均衡条件:MU1/MU2=P1/P2 其中,由可得:MU1=dTU/dX1 =3X22MU2=dTU/dX2 =6X1X2于是,有:3X22/6X1X2 = 20/30 (1)整理得将(1)式代入预算约束条件20X1+30X2=540,得:X1=9,X2=12因此,该消费者每年购买这两种商品的数量应该为:U=3X1X22=3888

问题描述:

4已知某消费者每年用于商品1和的商品2的收入为540元,两商品的价格分别为P1=20元和P2=30元,该消费者的效
我想知道mu1和mu2是怎么来的,就是不懂mu2的由来,
4已知某消费者每年用于商品1和的商品2的收入为540元,两商品的价格分别为=20元和=30元,该消费者的效用函数为,该消费者每年购买这两种商品的数量应各是多少?从中获得的总效用是多少?
根据消费者的效用最大化的均衡条件:
MU1/MU2=P1/P2
其中,由可得:
MU1=dTU/dX1 =3X22
MU2=dTU/dX2 =6X1X2
于是,有:
3X22/6X1X2 = 20/30 (1)
整理得
将(1)式代入预算约束条件20X1+30X2=540,得:
X1=9,X2=12
因此,该消费者每年购买这两种商品的数量应该为:U=3X1X22=3888