第一、二、三号牧场的面积依次为3公顷、5公顷、7公顷,三个牧场上的草长得一样密,且生长得一样快.有两群牛,第一群牛2天将一号牧场的草吃完,又用5天将二号牧场的草吃完.在这7天

问题描述:

第一、二、三号牧场的面积依次为3公顷、5公顷、7公顷,三个牧场上的草长得一样密,且生长得一样快.有两群牛,第一群牛2天将一号牧场的草吃完,又用5天将二号牧场的草吃完.在这7天里,第二群牛刚好将三号牧场的草吃完.如果第一群牛有15头,那么第二群牛有多少头?

15头牛,2天吃完1号牧场也就是3公顷,5天吃完2号牧场也就是5公顷;设每头牛吃草速度为每天X公顷,每公顷草的生长速度为每天Y公顷
可得方程:
2×15X=2×3Y+3,
     30X=6Y+3
  30X÷3=(6Y+3)÷3
     10X=2Y+1①
5×15X=7×5Y+5
   75X=35Y+5
75X÷5=(35Y+5)÷5
   15X=7Y+1②
由①得:10X×1.5=(2Y+1)×1.5
即为:15X=3Y+1.5代入②得:
     3Y+1.5=7Y+1
3Y+1.5-3Y-1=7Y+1-1-3Y
        0.5=4Y
      4Y÷4=0.5÷4
          Y=0.125
把Y=0.125代入①得:
    10X=2×0.125+1
10X÷10=1.25÷10
      X=0.125
设第2群牛有n头,可得方程
         7×0.125n=7×7×0.125+7
7×0.125n÷7÷0.125=(7×7×0.125+7)÷7÷0.125
                  n=15
答:第二群牛有15头.