已知正数a,b满足 1/a^2 +4/b^2

问题描述:

已知正数a,b满足 1/a^2 +4/b^2

正数a,b满足 a^2+2b^2=15 ,(改题了)
∴设a=√15cosu,b=√(15/2)sinu,0代入 1/a^2 +4/b^2 1/[15(cosu)^2]+4/[(15/2)(sinu)^2]1/15+(1/15)(tanu)^2+8/15+(8/15)(cotu)^2∴(tanu)^2+8(cotu)^2∴(tanu)^4-6(tanu)^2+8解得2∴√2∴arctan√2∴a+b=√(45/2)sin[u+arctan(1/√2)],
arctan√2+arctan(1/√2)=π/2,
sin(arctan√2)=√(2/3),cos(arctan√2)=√(1/3),
sin(arctan2)=2/√5,cos(arctan2)=1/√5,
∴sin[arctan2+arctan(1/√2)]=(2√2+1)/√15,
∴a+b的取值范围是[(4√3+√6)/2,3√10/2].