已知sina=1/3,sin(a+b)=1,求sin(a+2b)

问题描述:

已知sina=1/3,sin(a+b)=1,求sin(a+2b)

sin(a+2b)=sin(2a+2b)*cosa-cos(2a+2b)*sina
=2sin(a+b)*cos(a+b)*cosa-(cos(a+b)∧2-sin(a+b)∧2)*sina
=2*1*1*2√2/3-(1-1)*1/3
=4√2/3

因为sin(a+b)=1
所以a+b=2k*pi+pi/2
所以b=2k*pi+pi/2-a
所以
sin(a+2b)
=sin(a+b+b)
=sin(2k*pi+pi/2+2k*pi+pi/2-a)
=sin(4k*pi+pi-a)
=sin(pi-a)
=sin(a)
=1/3