tana=1/2,求值:2sina^2a-sinacosa+cos^2a

问题描述:

tana=1/2,求值:2sina^2a-sinacosa+cos^2a

解2sina^2a-sinacosa+cos^2a
=(2sina^2a-sinacosa+cos^2a)/1
=(2sina^2a-sinacosa+cos^2a)/(cos²α+sin²α)
=[(2sina^2a-sinacosa+cos^2a)/cos²α]/[(cos²α+sin²α)/cos²α]
=[(2tan^2a-tana+tan^2a)]/[(1+tan²α]
=[(2(1/2)^2-1/2+(1/2)^2)]/[(1+(1/2)²]
=1/5