求直线y=kx+3与直线y=(-2/k)x-1的交点轨迹方程.
问题描述:
求直线y=kx+3与直线y=(-2/k)x-1的交点轨迹方程.
答
由kx+3=-2x/k-1得交点x坐标:x=-4/(k+2/k)由y=kx+3得:k=(y-3)/x,将k值代入交点x坐标得:x=-4/[(y-3)/x+2x/(y-3)]=-4x(y-3)/[(y-3)^2+2x^2]化简得:(y-3)^2+2x^2+4(y-3)=0即:(y-1)^2+2x^2=4此轨迹为椭圆....