双曲线与圆X^2+Y^2=17有公共点A(4,-1),圆在A点的切线与双曲线的渐近线平行,求双曲线的方程.
问题描述:
双曲线与圆X^2+Y^2=17有公共点A(4,-1),圆在A点的切线与双曲线的渐近线平行,求双曲线的方程.
双曲线中心在原点
答
原点与A所在直线的斜率为-1/4 则圆在A点的切线斜率为41.设双曲线为x^2/a^2-y^2/b^2=1 则它的渐近线方程为y=bx/a 则b/a=4 此为一式双曲线与圆X^2+Y^2=17有公共点A(4,-1) 则A在双曲线上 则4^2/a^2-1/b^2=1 此为二式一...