设x,y,z是三个非零实数,且满足1/x+1/y+1/z=2,1/x*x+1/y*y+1/z*z=1,则1/x*y+1/y*z+1/z*x的值是多少?

问题描述:

设x,y,z是三个非零实数,且满足1/x+1/y+1/z=2,1/x*x+1/y*y+1/z*z=1,则1/x*y+1/y*z+1/z*x的值是多少?

(1/x+1/y+1/z)^2
=1/x^2+1/y^2+1/z^2+2/xy+x/yz+2/zx
即有:2^2=1+2*(1/xy+1/yz+1/zx)
所以1/xy+1/yz+1/zx=(4-1)/2=3/2