空间四边形ABCD中,E,F是AB,AD的中点,G,H在BC,DC上,且BG:GC=DH:HC=1:2.(1)求证:E,F,G,H四点共面(2)设EG与HF交与点P,求证:P,A,C三点共线
问题描述:
空间四边形ABCD中,E,F是AB,AD的中点,G,H在BC,DC上,且BG:GC=DH:HC=1:2.(1)求证:E,F,G,H四点共面(2)设EG与HF交与点P,求证:P,A,C三点共线
答
先根据EF//GH得FG和HE是共面的可以相交
再利用点P∈FG,FG在平面ABC内∴p∈平面ABC
点P∈EH,EH在平面ACD内∴p∈平面ACD
∴ P∈平面ABC和平面ACD的交线AC
∴P、A、C三点共线
synigen | 2011-02-17
20
0