2(3+1)(3+1)(3∧4+1)(3∧8+1)…(3∧64+1)+2=
问题描述:
2(3+1)(3+1)(3∧4+1)(3∧8+1)…(3∧64+1)+2=
答
原式
=2(3+1)(3^2+1)(3^4+1)(3^8+1)……(3^64+1)+2
=2(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)……(3^64+1)/(3-1)+2
=2(3^2-1)(3^2+1)(3^4+1)(3^8+1)……(3^64+1)/2+2
反复用平方差
=2(3^128-1)/2+2
相互抵消
=3^128-1+2
=3^128+1
请在客户端右上角评价点“满意”即可,能否更详细,结果具体值太大了只要这样