关于x的不等式(k2-2k+52)x<(k2-2k+52)1-x的解集是(  )A. x>12B. x<12C. x>2D. x<2

问题描述:

关于x的不等式(k2-2k+

5
2
)x<(k2-2k+
5
2
1-x的解集是(  )
A. x>
1
2

B. x<
1
2

C. x>2
D. x<2

k2−2k+

5
2
=(k−1)2+
3
2
>1,故函数f(x)=(k2−2k+
5
2
)
x
在R上是增函数,
故由不等式可得 x<1-x,解得 x<
1
2
,故不等式的解集为{x|x<
1
2
 }.
故选B.
答案解析:根据k2−2k+
5
2
=(k−1)2+
3
2
>1
,故函数f(x)=(k2−2k+
5
2
)
x
在R上是增函数,故由不等式可得 x<1-x,
解此不等式求出解集.
考试点:指、对数不等式的解法.
知识点:本题主要考查指数不等式对数不等式的解法,利用了指数函数的单调性,属于基础题.