如图,已知△ABC和△CDE都是等边三角形,AD、BE交于点F,则∠AFB等于( ) A.50° B.60° C.45° D.∠BCD
问题描述:
如图,已知△ABC和△CDE都是等边三角形,AD、BE交于点F,则∠AFB等于( )
A. 50°
B. 60°
C. 45°
D. ∠BCD
答
∵△ABC和△CDE都是等边三角形,
∴AC=BC,CE=CD,∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中,
,
AC=BC ∠ACD=∠BCE CD=CE
∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
设AD与BC相交于P点,在△ACP和△BFP中,有一对对顶角,
∴∠AFB=∠ACB=60°.
故选B.