已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y),且f(0)≠0,若f(π2)=0,求f(π)及f(2π)的值.

问题描述:

已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y),且f(0)≠0,若f(

π
2
)=0,求f(π)及f(2π)的值.

令x=y=0得f(0)+f(0)=2f(0)×f(0)=2f(0)
而f(0)≠0∴f(0)=1
令x=y=

π
2
得f(π)+f(0)=2f(
π
2
)f(
π
2
)=0
∴f(π)=-1
令x=y=π,得f(2π)+f(0)=2f(π)f(π)=2
∴f(2π)=1