log2(1+根号2+根号3)+log2(1+根号2-根号3)=中有一步是怎样来的解:log2(1+根号2+根号3)+log2(1+根号2-根号3)=log2[(1+√2+√3)(1+√2-√3)]=log2[(1+√2)²-(√3)²]=log2[2√2]=log2[2^(3/2)]=3/2这里log2[2√2]=log2[2^(3/2)]是怎样来的?可以用文字详细表达下吗?
问题描述:
log2(1+根号2+根号3)+log2(1+根号2-根号3)=中有一步是怎样来的
解:
log2(1+根号2+根号3)+log2(1+根号2-根号3)
=log2[(1+√2+√3)(1+√2-√3)]
=log2[(1+√2)²-(√3)²]
=log2[2√2]
=log2[2^(3/2)]
=3/2
这里log2[2√2]=log2[2^(3/2)]
是怎样来的?
可以用文字详细表达下吗?
答
2√2=2*2^(1/2)=2^(1+1/2)=2^(3/2)
∴log2[2√2]=log2[2^(3/2)]