已知:如图,E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分∠ABE.求证:BE=AF+CE.
问题描述:
已知:如图,E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分∠ABE.求证:BE=AF+CE.
答
证明:延长DC到G,使CG=AF,连接BG
∵AB=BC,∠A=∠BCG=90°,
∴△ABF≌△CBG,
∴∠5=∠G,∠1=∠3,
∵∠1=∠2,
∴∠2=∠3,
∴∠2+∠4=∠3+∠4,
即∠FBC=∠EBG,
∵AD∥BC,
∴∠5=∠FBC=∠EBG,
∴∠EBG=∠G,
∴BE=CG+CE=AF+CE.
答案解析:先延长DC到G,使CG=AF,连接BG,易证△ABF≌△CBG,得∠5=∠G,∠1=∠3,进而证明∠EBG=∠G,进而证明BE=CG+CE=AF+CE.
考试点:旋转的性质;等腰三角形的判定与性质;正方形的性质.
知识点:本题考查了旋转的性质,用到的知识点是正方形各边长相等、各内角为直角的性质,全等三角形的判定,全等三角形对应角相等的性质,本题中求证∠EBG=∠G是解题的关键.