如图,AB是半圆o的直径,E是弧BC的中点,OE交弦BC于点D,以知BC=8,DE=2,求圆o的半径的长
问题描述:
如图,AB是半圆o的直径,E是弧BC的中点,OE交弦BC于点D,以知BC=8,DE=2,求圆o的半径的长
答
没有具体的图 根本算不出来,,麻烦把图整出来
答
取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R方-5)三角形OEB的面积=OE*DB/2=2EO=2R三角形OEB的面积还=BE...