函数概念建立在映射的基础上,而映射不允许一对多,为什么所谓的多值函数却允许一对多?根据你们的回答,我得出的结论是:通常,我们说的函数是单值函数的简称,是建立在映射的基础上的;而多值函数是与函数是不同的概念体系,即函数不是单值函数和多值函数的统称.多值函数是一个独立的概念,他不是建立在映射的基础上的,他的定义就规定了可以是一对多的.不知道可不可以这么说.
问题描述:
函数概念建立在映射的基础上,而映射不允许一对多,为什么所谓的多值函数却允许一对多?
根据你们的回答,我得出的结论是:
通常,我们说的函数是单值函数的简称,是建立在映射的基础上的;而多值函数是与函数是不同的概念体系,即函数不是单值函数和多值函数的统称.多值函数是一个独立的概念,他不是建立在映射的基础上的,他的定义就规定了可以是一对多的.
不知道可不可以这么说.
答
从输入值集合X到可能的输出值集合Y的函数f (记作f:X→Y) 是X与Y的关系,且满足如下条件:
对集合X中任一元素x都有集合Y中的元素y满足x与y是f相关的。即对每一个输入值,Y中都有至少一个与之对应的输出值。
则此函数为多值函数。
注意多值函数定义与单值函数定义只有“x对应固定y”与“x对应唯一固定y”的区别。也就是说,多值函数对于一个固定的 x(x∈D)可能会有多个数值y与x对应(当然对于固定的x来说,对应的y的个数(至少一个)和y的取值都是固定的)。
一般地说,一个多值函数通常都可以分成若干个
单值函数(一般要求它们是连续的)。
答
我们通常说的函数是指单值函数,设f:A→B即对每一个x∈A,有唯一一个y∈B与之对应,即使f(x)=y.映射分为单射、满射和双射.函数必须是满射,所以函数可以分成一一对应和多对一.前者如f(x)=x+1,后者如f(x)=x^2.一一对应很...