如图所示,等腰△ABC的顶角∠A=120°,BC=12cm,求它的外接圆的直径.
问题描述:
如图所示,等腰△ABC的顶角∠A=120°,BC=12cm,求它的外接圆的直径.
答
作直径CD,连接BD,
∵CD是直径,
∴∠DBC=90°,
∵A、B、D、C四点共圆,
∴∠A+∠D=180°,
∵∠A=120°,
∴∠D=60°,
在△DBC中,sinD=
,BC CD
即sin60°=
,12 CD
∴CD=8
,
3
即△ABC的外接圆的直径是8
.
3
答案解析:作直径CD,连接BD,根据圆内接四边形求出∠D,根据CD是直径得出∠DBC=90°,根据sinD=
代入求出即可.BC CD
考试点:垂径定理;等腰三角形的性质;勾股定理.
知识点:本题考查了圆周角定理,圆内接四边形性质,解直角三角形等知识点,关键是得出sin60°=
.12 CD