f(x)在(-∞,+∞)上连续且是偶函数,F(x)=∫[0,x}(x-2t)f(t)dt 试证:F(x)为偶函数,求过程和方法!
问题描述:
f(x)在(-∞,+∞)上连续且是偶函数,F(x)=∫[0,x}(x-2t)f(t)dt 试证:F(x)为偶函数,求过程和方法!
答
F(x)=∫[0,x] (x-2t)f(t) dt,所以F(-x)=∫[0,-x] (-x-2t)f(t) dt,对积分做换元s=-t,得F(-x)=∫[0,-x] (-x-2t)f(t) dt=∫[0,x] (-x+2s)f(-s) -ds=∫[0,x] (x-2s)f(s) ds=∫[0,x] (x-2t)f(t) dt(积分变量可随意更换)...