设f(x)=x^3+ax^2+bx+1的导数f'(x)满足f'(1)=2a,f'(2)=-b,其中常数a,b属于R(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f'(x)e^(-x),求函数g(x)的极值
问题描述:
设f(x)=x^3+ax^2+bx+1的导数f'(x)满足f'(1)=2a,f'(2)=-b,其中常数a,b属于R
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f'(x)e^(-x),求函数g(x)的极值
答