1+1/√2+1/√3+1/√4+……+1/√N的值从第几项开始大于3?

问题描述:

1+1/√2+1/√3+1/√4+……+1/√N的值从第几项开始大于3?

s=1+1/√2+1/√3+1/√4+……+1/√n
=2/(√1+√1)+2/(√2+√2)+2/(√3+√3)+……+2/[√n+√n]
>2/(√2+√1)+2/(√3+√2)+2/(√4+√3)+……+2/[√n+√(n-1)]
=2*[(√2-√1)+(√3-√2)+(√4-√3)+……+[√n-√(n-1)]
=2*(-1+√n)>3
√n>2.5
n>6.25
所以n=7