判断y=1-2x3 在(-∞,+∞)上的单调性,并用定义证明.

问题描述:

判断y=1-2x3 在(-∞,+∞)上的单调性,并用定义证明.

证明:f(x)=1-2x3在(-∞,+∞)上为单调减函数,证明如下
任取x1,x2∈R,且x1<x2
则f(x1)-f(x2
=(1-2x31)-(1-2x32
=2(x32-x13
=2(x2-x1)(x22+x1x2+x21
=2(x2-x1)[(x1+x22+

3
4
x22]
∵x2>x1,∴x2-x1>0,
又(x1+x22≥0,
3
4
x22≥0,且(x1+x22
3
4
x22不同时为0,
∴2(x2-x1)[(x1+x22+
3
4
x22]>0.
∴f(x1)-f(x2)>0,即f(x1)>f(x2) 
故f(x)=1-2x3在(-∞,+∞)上为单调减函数.
答案解析:在实数集内人去两个自变量的值,函数值作差后进行因式分解,展开立方差后后面的二次三项式还要进行配方,最后判断差式的符号,得到函数值的大小,从而得到结论.
考试点:函数单调性的判断与证明.
知识点:本题考查了函数单调性的判断与证明,关键是作差判符号,作差时因式分解要彻底,避免出现“证题用题”现象的发生,此题是中档题.