已知a,b,c为正实数,且ab+bc+ca=1(1)求a+b+c-abc的最小值(2)证明:a^2/(a^2+1)+b^2/已知a,b,c为正实数,且ab+bc+ca=1(1)求a+b+c-abc的最小值(2)证明:a^2/(a^2+1)+b^2/(b^2+1)+c^2/(c^2+1)≥3/4
问题描述:
已知a,b,c为正实数,且ab+bc+ca=1(1)求a+b+c-abc的最小值(2)证明:a^2/(a^2+1)+b^2/
已知a,b,c为正实数,且ab+bc+ca=1
(1)求a+b+c-abc的最小值
(2)证明:a^2/(a^2+1)+b^2/(b^2+1)+c^2/(c^2+1)≥3/4
答