在等差数列{an} 中,a7+a8+a9=24,则S15=(  )A. 100B. 120C. 130D. 140

问题描述:

在等差数列{an} 中,a7+a8+a9=24,则S15=(  )
A. 100
B. 120
C. 130
D. 140

∵数列{an}为等差数列,
∴a7+a8+a9=(a7+a9)+a8=3a8=24,
∴a8=8,
又a1+a15=2a8
则S15=

15(a1+a15
2
=15a8=120.
故选B
答案解析:由数列{an}为等差数列,利用等差数列的性质化简已知的等式,得出a8的值,再利用等差数列的求和公式表示出S15,利用等差数列的性质化简后,将a8的值代入即可求出值.
考试点:等差数列的性质;等比数列的前n项和.
知识点:此题考查了等差数列的性质,以及等差数列的求和公式,熟练掌握性质及公式是解本题的关键.