当x∈[-π/6,π/4],y=asin(2x+π/6)+b,函数最大值为3,最小值为1,求a、b
问题描述:
当x∈[-π/6,π/4],y=asin(2x+π/6)+b,函数最大值为3,最小值为1,求a、b
答
-1≤sin(2x+π/6)≤1
所以最大值就是a+b,最小值就是b-a
可得2b=4,b=2
a=1
答
当a>0时最大值为a+b=3 最小值为-1/2a+b=1, a=4/3,b=5/3
当a
答
设z=2x+π/6,则:y=asinz+b因为x∈[-π/6,π/4],所以:z∈[-π/6,2π/3]显然,当z=π/2时,sinz有最大值,即y有最大值:y|max=asin(π/2)+b=a+b当z=π/6时,sinz有最小值,即y有最小值:-y|min=asin(-π/6)+b=-a/2+b依已...
答
可以画图像
当x=-π/6,y有最小值(-1/2)a+b=1
当x=π/6,y有最大值a+b=3
解得a=4/3,b=5/3