已知数列{an}满足条件:a1=1,a2=r,且数列{anan+1}是公比为q的等比数列.设bn =a(2n-1)+a(2n)(n属于N(1)求出使ana(n+1)+a(n+1)a(n+2)>a(n+2)a(n+3)成立的q的取值范围;(2)求bn和(1/sn)的极限,其中sn=b1+b2+...+bn
问题描述:
已知数列{an}满足条件:a1=1,a2=r,且数列{anan+1}是公比为q的等比数列.设bn =a(2n-1)+a(2n)(n属于N
(1)求出使ana(n+1)+a(n+1)a(n+2)>a(n+2)a(n+3)成立的q的取值范围;(2)求bn和(1/sn)的极限,其中sn=b1+b2+...+bn
答
(1)∵数列{a[n]}满足条件:a[1]=1,a[2]=r,且数列{a[n]a[n+1]}是公比为q的等比数列
∴q≠0,r≠0,且a[n]a[n+1]=a[1]a[2]q^(n-1)=rq^(n-1)
∵a[n]a[n+1]+a[n+1]a[n+2]>a[n+2]a[n+3]
∴rq^(n-1)+rq^n>rq^(n+1)
1+q>q^2
即:q^2-q-1