n是正整数,3n+1是完全平方数,证明:n+1是3个完全平方数之和.设3n+1=m2,则m=3k+1或m=3k+2(k是正整数).若m=3k+1,则n=m2-13=3k2+2k.∴n+1=3k2+2k+1=k2+k2+(k+1)2.若m=3k+2,则n==3k2+4k+1∴n+1=3k2+4k+2=k2+(k+1)2+(k+1)2.故n+1是3个完全平方数之和.请问为什么设3n+1=m的平方之后,m就等于3k+1或3k+2呢?
问题描述:
n是正整数,3n+1是完全平方数,证明:n+1是3个完全平方数之和.
设3n+1=m2,则m=3k+1或m=3k+2(k是正整数).
若m=3k+1,则n=
m2-1
3
=3k2+2k.
∴n+1=3k2+2k+1=k2+k2+(k+1)2.
若m=3k+2,则n=
=3k2+4k+1
∴n+1=3k2+4k+2=k2+(k+1)2+(k+1)2.
故n+1是3个完全平方数之和.
请问为什么设3n+1=m的平方之后,m就等于3k+1或3k+2呢?
答
因为 3n+1= m^2 故 n= (m^2-1)/3=(m-1)(m+1)/3,n为正整数 所以有 m-1或m+1 为3的整数倍,即m-1=3k k为正整数 或 m+1=3k k为正整数,与你答案有出入啊,而且去n=1,则3n+1=2*2,符合条件,而n+1=1+1=2 则如果不用0代替,则不能转成3个完全平方整数之和,题目或许有问题