帮我算道题.在三角形ABC中,BC=2,AB=2,sinC/sinB=2(根号6+1)/5,则A=?
问题描述:
帮我算道题.在三角形ABC中,BC=2,AB=2,sinC/sinB=2(根号6+1)/5,则A=?
答
由正弦定理
sinC/sinB=AB/AC
所以AC=AB*sinB/sinC=2*5/[2(√6+1)]=5/(√6+1)=√6-1
由余弦定理
cosA=(AB^2+AC^2-BC^2)/(2AB*AC)
=(4+7-2√6-4)/(2*2*(√6-1))=(7-2√6)/(4(√6-1))
A=arccos(7-2√6)/(4(√6-1))
答
根据正弦定理得,sinC/sinB=AB/AC=2(√6+1)/5
2(√6+1)AC=5AB
∵AB=2
∴AC=5/(√6+1)=√6-1
又根据余弦定理
cosA=(AC²+AB²-BC²)/(2*AC*AB)=(2-2√6)/[4(√6-1)]
=-1/2
A=120°