设a1a2a3是三个N维向量,又B1=a1+a2,b2=a2+a3,b3=a3+a1,证明a1a2a3的线性无关充分必要条件是b1b2b3线性无关
问题描述:
设a1a2a3是三个N维向量,又B1=a1+a2,b2=a2+a3,b3=a3+a1,证明a1a2a3的线性无关充分必要条件是b1b2b3线性无关
答
设a1a2a3是三个N维向量,又B1=a1+a2,b2=a2+a3,b3=a3+a1,证明a1a2a3的线性无关充分必要条件是b1b2b3线性无关